# BOOKOEADSIERIE

6<sup>th</sup> South East Asian Technical University Consortium (SEATUC) Symposium





# March 6-7, 2012, KMUTT, Thailand

# 6<sup>th</sup> South East Asian Technical University Consortium (SEATUC) Symposium



L & O # ± & Ø O

March 6-7, 2012, KMUTT, Thailand

This book contains the abstract of the papers presented at 6<sup>th</sup> South East Asian Technical University Consortium (SEATUC) Symposium

Held at King Mongkut's University of Technology Thonburi, Thailand March 6-7, 2012

Reasonable efforts have been made to publish reliable data and information but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use

© 2012 by South East Asian Technical University Consortium (SEATUC)

All rights reserved. This book or any part therefore may not be reproduced in any form or by any means without written permission of SEATUC



## PREFACE

On behalf of King Mongkut's University of Technology Thonburi

(KMUTT), it is my great pleasure to be the host of the 6<sup>th</sup> SEATUC Symposium, held during 6th -7th March 2012 at KMUTT.

South East Asian Technical University Consortium (SEATUC) is academic collaboration on Science and Technology established in 2006. At present, there are 8 member universities in 5 countries.

SEATUC Symposium or an academic meeting on Science and Technology is organized every year in order to continually exchange academic researches. It is the integral part which provides an opportunity for prominent researchers, engineers and practitioners who serves as faculty members and students of SEATUC member universities to present the latest research on Science and Technology.

We acknowledge and appreciate the contribution of papers for this symposium. We are grateful to the members of the Steering Committee and the Organizing Committee for the time they spent in making this symposium a successful event. In this regard, particular mention should be made for the exceptional support of all representatives from member universities to make this symposium a success.

Assoc.Prof.Dr.Sakarindr Bhumiratana President of SEATUC President of King Mongkut's University of Technology Thonburi

# TABLE OF CONTENT

| Preface                                                | 1    |
|--------------------------------------------------------|------|
| Table of Content                                       | 2    |
| Committees                                             | 3    |
| Program at a Glance                                    | 6    |
| Maps                                                   | 8    |
| Presentation Session Schedule                          | 11   |
| Abstract                                               | 23   |
| OS 01: Energy, Environment, & Earth System Science     | 25   |
| OS 02: Information & Communication Technology          | 49   |
| OS 03: Architecture, Urban Planning & Design           | 63   |
| OS 04: Bioscience, Biological, and Engineering Science | e 99 |
| OS 05: Robotics & Mechanical Engineering               | 117  |
| OS 06: Materials Science & Engineering                 | 135  |
| OS 07: Natural, Physical, & Basic Sciences             | 153  |
| OS 08: Civil & Transportation Engineering              | 157  |
| OS 09: Applied Mathematics & Informatics               | 161  |
| OS 10: Electrical Engineering                          | 177  |
| OS 11: Electronics and Telecommunications              | 187  |
| OS 012: Other related topics                           | 191  |

## COMMITTEES

## Scientific Technical Committee

## Co-chairperson

Prof. Somchai Chucheepsakul (KMUTT, Thailand) Prof. Akito Takasaki (SIT, Japan)

#### Secretariat

Prof. Bundit Thipakorn (KMUTT, Thailand)

## Members

Prof. Ha Duyen Tu (HUST, Vietnam) Prof. Phan Dinh Tuan (HCMUT, Vietnam) Representative of ITB, Indonesia Representative of UGM, Indonesia Prof. Ho Chin Siong (UTM, Malaysia) Assoc.Prof.Flt.Lt. Kontorn Chamniprasart (SUT, Thailand) Prof. Chai Jaturapitakkul (KMUTT, Thailand) Prof. Chaiyuth Chinnarasri (KMUTT, Thailand) Prof. Jongjit Hirunlabh (KMUTT, Thailand) Prof. Narongrit Sombatsompop (KMUTT, Thailand) Prof. Pichet Limsuwan (KMUTT, Thailand) Prof. Ratana Jiraratananon (KMUTT, Thailand) Prof. Somchai Wongwises (KMUTT, Thailand) Prof. Somehart Soponronnarit (KMUTT, Thailand) Prof. Sumrerng Jugjai (KMUTT, Thailand) Prof. Suntud Sirianuntapiboon (KMUTT, Thailand)

## Organizing Committees

Chairperson

Asst.Prof. Bundit Thipakorn Secretariat Asst.Prof. Anak Khantachawana Committee Assoc.Prof. Kittichai Lavangnananda Assoc.Prof. Navadol Laosiripojana Assoc.Prof. Solot Suwanayuen Asst.Prof. Jonathan Chan Asst.Prof. Kuskana Kubaha Asst.Prof. Marong Phadoongsidhi Asst.Prof. Poj Tangamchit Asst.Prof. Sakol Teeravarunyou Asst.Prof. Sansanalak Rachdawong Asst.Prof. Thaveechai Kalasin Asst.Prof. Varit Srilaong Asst.Prof. Wandee Onreabroy Asst. Prof. Krittika Tanprasert Mr. Phichit Kajondecha Mr. Nutthachai Pongprasert Mr. Atikorn Wongsatanawarid Mr. Chawin Chantharasenawong Mr. Manon Suklamai Mr. Pongsak Khunrae Mr. Thiradet Jiarasuksakun

4

Mr. Withawat Mingvanish Mr. Worawarong Rakreungdet Ms. Phongsri Waysarach Mr. Atdtabhon Sakundachratana Mr. Padung Boonpetch Mr. Prapon Ruengvuthchanaphuech Mr. Somyos Jinkow Mr. Triwit Rattanarojpong Ms. Kanittha Kaewla-Iad Ms. Kannika Songja Ms. Noparat Rungpran Ms. Panatda Puangthong Ms. Patcharin Uthondan Ms. Ruangurai Piekkhuntod Ms. Siwatas Haputpong Ms. Sopida Boonaneksap Sub.LT. Rungroat Yindeetip Secretary Ms. Ayako Watanabe Mr. Banchakarn Sameephet Ms. Chindaphorn Boonsri Ms. Cholladda Naksin Ms. Duangduean Pak-At Ms. Parichart Kreaktarvuth Ms. Sasima Juwasophi

5

## Presentation Session I (March 6, 2012 at 13.00-15.20)

| Time  | Room 1                                                                                                                                            | Room 2                                                                                                                               |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 13.00 | (01) Effects of Powdered<br>Activated Carbon (PAC) and<br>Alum on Membrane Fouling in<br>Submerged Membrane Bioreactor<br><i>T.X. Bui (HCMUT)</i> | (05) Heat Transfer From a<br>Rotating Disk<br>K.O. Lee (UTM)                                                                         |
| 13.20 | (01) Application of Wetland Roof<br>for Domestic Wastewater<br>Treatment: Treatment<br>Performance of Plants<br><i>T.X. Bui (UTM)</i>             | (05) Modelling the Topography of<br>Surfaces in HSM with Spherical<br>Cutters<br><i>H. Nguyen (HUST)</i>                             |
| 13.40 | (01) Water and Wastewater<br>Minimisation Study of Paper Mill<br>In Binh Duong Province, Vietnam<br>L.T. Le (HCMUT)                               | (05) A Study of Clamping Effects<br>in Swaging Process for Head<br>Stack Assembly<br>J. Kanaramkul (KMUTT)                           |
| 14.00 | (01) Towards Sustainable Solid<br>Waste Management in Iskandar<br>Malaysia: Using The Japanese<br>Eco-Town Concept<br>H. Siong & T.Tsong (UTM)    | (05) Simulation Studies of the<br>Estimated Si Engine Load Torque<br>Using Adaptive Observer-<br>Compensator<br>J. Nunthasukon (SUT) |
| 14.20 | (01) Performance Study of<br>Vegetable Oils as Environmental<br>Friendly Drilling Fluid<br>A.R.Ismail (UTM)                                       | (05) A Monte Carlo-Based<br>Meshless Method for 2d Linear<br>Elasticity<br>P. Juangjerm (KMUTT)                                      |
| 14.40 | (01) Life Cycle Cost Analysis of<br>Indonesian Cassava Ethanol<br>N.L. Nasution (KMUTT)                                                           | (02) Intelligent Space Design for<br>The Elderly<br>S. Tivatansakul (SIT)                                                            |
| 15.00 | (01) Life Cycle Cost Analysis of<br>Biodiesel Production from<br>Jatropha Curcas Oil in Indonesia<br>L. Febrina (KMUTT)                           | (02) Evaluation of Learning<br>Resources Genereted from Drug<br>Information Database<br>K. Nabeta (SIT)                              |

## Presentation Session I (cont.)

| Room 3                   | Room 4                   | Room 5                   |
|--------------------------|--------------------------|--------------------------|
| (03) Understanding       | (04) Characterization of | (06) Rigid Polyurethane  |
| Cultural Landscapes in   | Transcriptional          | /Clay Nanocomposite      |
| Thai Urban Context:      | Regulators in            | Foams using Polyols      |
| Bangkok as a             | Saccharomyces            | with Different Hydroxyl  |
| Neglecting Water-Based   | cerevisiae               | Values                   |
| City (Invited paper)     | C.Tangsombatvichit       | S. Sontikaew (KMUTT)     |
| W. Shinawatra (KMUTT)    | (KMUTT)                  | Parity of Statements     |
| (03) Influence of        | (04) Regulatory Control  | (06) Influence of Water  |
| Familiarity on Designers | of Ergosterol            | Adsorption on            |
| nnd Non-Designers In     | Biosynthetic Gene        | Mechanical Properties    |
| Rating of Urban          | Expression in the Yeast  | of Recycled Materials    |
| Sculptures               |                          | From Waste Melamine      |
| M.Malekinezhad (UTM)     | S. Baramee (KMUTT)       | K. Wonglane (SUT)        |
| (03) The Trends and      | (04) Recycling of        | (06) Study on Properties |
| Emergence of Science     | Selenium from K-         | of Recycled Materials    |
| Cities                   | Powder Using             | from Waste Melamine      |
| O. Kayode (UTM)          | S. Ochiai (SIT)          | M. Mahai (SUT)           |
| (03) Social Interaction  | (04) Analysis of the     | (06) Corrosion           |
| and Sense of             | Initial Monooxygenase    | Resistance of Low        |
| Community in             | Genes and Degradation    | Carbon Steel Treated by  |
| Malaysian Low Cost       | Properties of Gaseous    | Gas Surface Hardening    |
| Flats                    | Hydrocarbons             | Method                   |
| A.A Aziz (UTM)           | T. Suzuki (SIT)          | K.K. Tachee (SUT)        |
| (03) Benchmarking        | (04) Isolation and       | (06) Banana Fibers as    |
| Sustainability and       | Analysis of Genes        | Novel Natural            |
| Ecological Footprint of  | Involved in Carbazole    | Resources for Plastics   |
| African Cities.          | Degradation              | Reinforcement            |
| A.R. Nelson (UTM)        | K. Iwata (SIT)           | S. Mimoto (SIT)          |
| (03) Familiarity Index   | (04) Simulation of       | (06) High Density        |
| for Landmarks in an      | Vascular Volume          | Plasma Nitriding of      |
| Urban Environment        | Change                   | Tool and Die Steels      |
| H. Najafpour (UTM)       | P. Uangpairoi (SIT)      | T. Aizawa (SIT)          |
| (03) Attribute of Pocket | (04) Development of An   | (06) Precise             |
| Parks and its Influence  | Observation Device for   | Characterisation of      |
| on Behavior              | a Capillary Behavior     | Nano-Columnar DI C       |
| D. Javadian (UTM)        | T. Yamadera (SIT)        | Film by Raman            |
|                          |                          | Spectroscopy and AFM     |
|                          |                          | J.H. Foo (SIT)           |

# Presentation Session II (March 6, 2012 at 15.40-18.00)

| Time  | Room 1                                                                                                                                                   | Room 2                                                                                                                                                          |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.40 | (01) Characterization of Vietnam<br>Biomass Fuel Properties and<br>Investigation into their Thermal<br>Behaviour<br>V.D. S. Tho (HUST)                   | (02) A Proposal of a Data<br>Structure as the Specific Patient<br>Database of Contraindication<br>Based on Package Inserts<br><i>R. Okuya (SIT)</i>             |
| 16.00 | (01) The Effects of Diesel Fuel<br>Exposure to High Pressure<br>Common Rail System on its<br>Deposit Forming Tendency<br>M.A. Abdullah (UTM)             | (02) Proposal of Appearance<br>Similarity Index for Medicinal<br>Ampoule Labels Based on<br>Wavelet Analysis<br><i>M. Kimura (SIT)</i>                          |
| 16.20 | (01) Microwave Induced<br>Processing of Waste Edible Oil to<br>Biodiesel<br>F.N. Ani (UTM)                                                               | (02) Encoding PN-DFG in<br>NuSMV for Verifying<br>Asynchronous Circuits<br>T.H. Bui (HCMUT)                                                                     |
| 16.40 | (01) Preparation Of Fatty Acid<br>Methyl Ester From Spent<br>Bleaching Clay<br>P. Phakahan (KMUTT)                                                       | (02) Mobile SCTP Handover in<br>Long Term Evolution-Advanced<br>for Service Continuity<br>M.N.F. Ghazali (UTM)                                                  |
| 17.00 | (01) Sustainability Analysis of<br>Renewable Energy Technologies<br>and Policies Potential Impact on<br>Rural Area's Energy Mix and<br>AA.Setiawan (UGM) | (07) Effect of Isooctane and<br>Temperature on the Separation of<br>Lipids on Phenogel Column<br>S. Chumsantea (KMUTT)                                          |
| 17.20 | (01) Measurement of Streaming<br>Potential Coupling Coefficient on<br>Carbonate Rocks for Downhole<br>Monitoring in Smart Wells<br>M.Z. Jaafar (UTM)     | (07) Extraction of Free Phenolic<br>Acids from Defatted Rice Bran<br>Using Different Solvents<br>A. Cheewaphan (KMUTT)                                          |
| 17.40 | (01) Comparison in Power<br>Consumption and Coefficient of<br>Performance of Air-Conditioners<br>in Vietnam<br>H.L. Pham (HUST)                          | (07) Qualitative Determination of<br>Nonylphenol Polyethoxylate and<br>their Degradation Products from<br>Fenton and Photo-Fenton<br><i>N. Thongkon (KMUTT)</i> |

## Presentation Session II (cont.)

| Room 3                       | Room 4                    | Room 5                 |
|------------------------------|---------------------------|------------------------|
| (03) Urban Studio            | (10) A Study on the       | (06) Plasma Diagnosis  |
| Project: Urban               | Design of an Automated    | in Etching and Ashing  |
| <b>Regeneration Approach</b> | Fabric Defect Marking     | of Diamond Carbon      |
| of Heritage Buffer           | System                    | Coating                |
| L.Y. Lai (UTM)               | P.N. Hai (HUST)           | E.E. Yunata (SIT)      |
| (03) Review on               | (10) Real Power           | (06) Plasma Micro-     |
| Methodology of               | Dispatch with             | Patterning onto        |
| Modeling Green Space         | Transmission Constraint   | Diamond Like Carbon    |
| Network in Urban             | by Augmented Lagrange     | Coating                |
| Landscape Planning           |                           | N. T. Redationo (SIT)  |
| H.B.A. Aziz (UTM)            | K.P. Nguyen (HCMUT)       | LAG GARA               |
| (03) The Evaluation of       | (10) Self-Organizing      | (06) Nano-Laminated    |
| Social Fairness and          | Hierarchical Particle     | Diamond-like Carbon    |
| Residents' Desirability      | Swarm Optimization for    | Coating to Control     |
| Perception                   | Two-Area                  | Hydrogen Penetration   |
| G. Mortezaei (UTM)           | K.P. Nguyen(HCMUT+SIT)    | H. Morita (SIT)        |
| (03) Does the User           | (10) Discussion on        | (06) Extraction of     |
| Participate in Nigerian      | Unbalance Condition of    | Catechin From Areca    |
| Public Mass Housing          | Protective Relay          | Catechu Linn using     |
| Delivery?                    | Malfunction               | Accelerated Solvent    |
| A.A. Isa (UTM)               | T. Mineo (SIT)            | M. Hasan (UTM)         |
| (12) Among Neighbors:        | (10) Short-Term Load      | (06) Transmittance     |
| Developing an                | Forecasting via           | Characteristic of      |
| Academic Art and             | Artificial Neural         | Various Mineral and    |
| Design Community             | Network                   | Synthetic Oils         |
| K. Hiroki (KMUTT)            | M.N. Bin (SIT)            | R. Ogura (SIT)         |
| (12) Description Of          | (10) Load                 | (06) Evaluation of the |
| HFO-1234ze with              | Characteristics Influence | Proportion of Iron     |
| Backone Equation of          | on Current Controller of  | Cations and their      |
| State                        | Dispersed Generation      | Influence              |
| N.A. Lai (HUST)              | T.N. Duc (SIT)            | L.T.L. Anh (HUST)      |
|                              | (10) Electrochemical      | (06) Photochemistry    |
|                              | Properties of New         | Properties of Tio2     |
|                              | Carbon Materials for      | Nanoparticles          |
|                              | Supercapacitor            | Synthesized by         |
|                              | S. Matsumoto (SIT)        | L.T.L. Anh (HUST)      |

## Presentation Session III (March 7, 2012 at 9.00-10.20)

| Time  | Room 1 (402)                                                                                                                                                                    | Room 2 (403)                                                                                                                   |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 9.00  | (01) A Study on Droop Control<br>and Virtual Resistor in Grid-<br>Connected Inverter for Microgrid<br>Power System<br>A. Rizqiawan (SIT)                                        | (03) The Potential Input of<br>Architects in Self-Built Housing<br>Provision: A Case Study in Urban<br>Dhaka<br>T.H. Khan (UTM |
| 9.20  | (01) Linking Power System<br>Engineering and Daily Life<br>G. Fujita (SIT)                                                                                                      | (03) Identifying"Third Places" in<br>Relation to Businesses Premises<br>in Meldrum Walk<br><i>M. Torabi (UTM)</i>              |
| 9.40  | (01) Design and Development of<br>A 10 kW Permanent Magnet<br>Synchronous Generator Prototype<br>for a Grid Connected Low Wind<br>Speed Wind Turbine<br>A. Pliensakul (KMUTT)   | (03) Children's Preferences for<br>School Ground Elements: A Pilot<br>Study<br>N.F. Aziz (UTM)                                 |
| 10.00 | (01) Microstructural Changes in<br>Ni-Based Single Crystal<br>Superalloy Coatings -Effects of<br>Surface Treatment and Surface<br>Crystal Orientation-<br><i>K. Kasai (SIT)</i> | (03) What is an Experiment? A<br>Note on Methodology and<br>Practice-Based Research<br>N. Power (KMUTT)                        |

## Presentation Session III (cont.)

| Room 3 (404)           | Room 4 (410)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Room 5 (411)                         |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| (03) Affordances of    | (06) Non-Aqueous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (09) Hybrid Steepest                 |
| Housing Interior Walls | Electroless Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Descent Method for                   |
| Finishes               | Plating Catalyzed By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solving Hierarchical                 |
| Z.Z. Bako (UTM)        | AlCl <sub>3</sub> in Ambient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fixed Point Approach to              |
| A                      | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Variational Inequalities             |
|                        | N.A. Binti (SIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Constrained                          |
|                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Optimization Problem                 |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N. Wairojjana (KMUTT)                |
| (03) The Need for      | (06) Ab Initio Study Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (09) Convergence of                  |
| Behaviourial Change    | H Dissociation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iterative Algorithms for             |
| Towards Sustainable    | Properties in MgH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Solving Mixed                        |
| Solid Waste            | Catalyzed with 3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Variational Inequalities             |
| Management in          | Transition Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and Complementarity                  |
| Malaysia               | T. Kobayashi (SIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Problems                             |
| A.M. Akil (UTM)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P. Phuangphoo(KMUTT)                 |
| (03) The Potential of  | (05) Development of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (09) An Application of               |
| Applying Crime         | Grip Aid Device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Perturbation Theory to               |
| Prevention Through     | D. Yamabe (SIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The Harmonic                         |
| Environmental Design   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Oscillator                           |
| (CPTED) Principles in  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S. Kittishayarak (KMUTT)             |
| Malaysian Residential  | and the second se | track internation of the line of the |
| Neighbourhood          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a prime Town of the Line of the      |
| P.M.B. Zulkarnain(UTM) | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and have been a                      |
| (03) School-Group      | (05) Obstacle Avoidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (09) Strong                          |
| Learning at            | for Multi-Link Inverted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Convergence of a New                 |
| Environmental Site:    | Pendulum Robot Using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iterative Method for                 |
| Evaluation of The      | Virtual Impedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pseudo-Contraction and               |
| Environmental          | D. Phaoharuhansa (SIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Monotone Mappings                    |
| Education Program at   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | with Applications to                 |
| Tanjung Pial National  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimization Problem                 |
| Park, Malaysia         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T. Chamnarnpan(KMUTT)                |
| S.B. Labintah (SIT)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |

# Presentation Session IV (March 7, 2012 at 10.40-12.00)

| Time  | Room 1 (402)                                                                                                                  | Room 2 (403)                                                                                                                          |
|-------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 10.40 | (01) A Study of Vertical Shading<br>Devices for Daylighting Through<br>Window in The Tropics<br><i>M.F. Budiman (KMUTT)</i> . | (03) Questions of Introductory<br>Drawing in Programs in<br>Architecture and Design<br><i>M. Croft (KMUTT)</i>                        |
| 11.00 | (01) Daylighting with Horizontal<br>Shading Devices on South Façade<br>in Tropical Area<br>D. Lidya (KMUTT)                   | (03) The Cognitive Difference of<br>Usability on Gender: A Case<br>Study of Respiratory Protective<br>Device<br>P. Kitirojpan (KMUTT) |
| 11.20 | (01) Effects of Reference<br>Environment Temperature on<br>Exergetic Performance of Two<br>Coal-Fired Power Plants: Selected  | (03) Self Selection and<br>Personalization in Architectural<br>Design Process (ADP)<br><i>M. Torabi (UTM)</i>                         |
|       | Case Studies in Thailand and<br>Indonesia                                                                                     | (Ostasiko u sentar<br>Avenue a sentar a sentar                                                                                        |

## Presentation Session IV (cont.)

| Room 3 (404)                                                                                                                                   | Room 4 (410)                                                                                                                                    | Room 5 (411)                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (03) Stormwater Runoff<br>Mitigation on Extensive<br>Green Roof: A Review<br>on Trends and Factors<br><i>R. Krishnan (UTM)</i>                 | (05) Development of<br>aGrasping Method Sing<br>Tactile Semsors<br>T. Matsui (SIT)                                                              | (09) New Algorithm for<br>Equilibrium Problems,<br>Set of Fixed Point<br>Problem and Zero<br>Points of Maximal<br>Monotone Operators in<br>Banach Spaces<br>N. Onjai-uea<br>(KMUTT)                               |
| (03) Townhouses in<br>Bangkok: Assessment<br>and Recommendations<br>for Natural Ventilation<br>D. Mrugala<br>(KMUTT)                           | (05) Development of<br>Simulation Model for<br>Charging Stratified TES<br>Tank Using<br>Temperature<br>Distribution Analysis<br>J. Waluyo (UGM) | (09) An Iterative<br>Algorithm for Solving<br>Common Solution of<br>Generalized Mixed<br>Equilibrium Problems,<br>Variational Inclusion<br>Problem and Fixed<br>Point Problems<br>T Jitpeera &<br>P.Kumam (KMUTT) |
| (03) Investigations and<br>Recommendations for<br>Townhouses in Bangkok<br>Through Simulations of<br>Thermal Performance<br>D. Mrugala (KMUTT) | (05) Emotion<br>Recognition from ECG<br>Based on Mirror Neuron<br>System<br>K. Rattanyu (SIT)                                                   | (09) Mathematical<br>Analysis of Malaria<br>Transmission Model<br>with Nonlinear<br>Incidences<br>P. Roop-o (KMUTT)                                                                                               |
| (03) Review the<br>Performance of Anidolic<br>Daylight System<br>M. Roshan (UTM)                                                               | (05) Object<br>Management Service In<br>intelligent Space<br>W. Skulkittiyut (SIT)                                                              | (09) Convergence<br>Theorem for a Common<br>Solution of System of<br>Equilibrium Problems,<br>System of Variational<br>Inclusion Problems and<br>Fixed Point Problems<br>U. Witthayarat(KMUTT)                    |

## Presentation Session V (March 7, 2012 at 13.00-15.20)

| Time  | Room 1 (402)                                                                                                                   | Room 2 (403)                                                                                                                                               |
|-------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13.00 | (02) Questionnaire Survey on<br>Kawaii Ribbons with Different<br>Colors and Patterns<br><i>M. Ohkura (SIT)</i>                 | (04) Wheelchair Driving Analysis<br>System Incorporating<br>Assessment of Sitting Posture<br>A. Hanafusa (SIT)                                             |
| 13.20 | (02) Semantic Role Labeling for<br>Plagiarism Detection<br>A.H. Osman (UTM)                                                    | (04) Changes of The Gait<br>Characteristics due to Robotic<br>Gait Training in Patients With<br>incomplete Spinal Cord Injury<br><i>T. Takahashi (SIT)</i> |
| 13.40 | (02) Yet Another Variable<br>Dependency Analysis for<br>Abstraction Guided Model<br>Checking<br><i>T.H. Bui (HCMUT)</i>        | (04) Energetics in Arterioles<br>During Nitric Oxide Dependent<br>and Independent Vasodilation<br><i>M. Shibata (SIT)</i>                                  |
| 14.00 | (02) A New Scan Conversion of<br>Bézier Curve<br>C. Thanutong (KMUTT)                                                          | (04) Postural Strategy During<br>Passive Postural Movement the<br>Influence of Translation<br>Frequency on Postural Strategy<br><i>H. Tabei (SIT)</i>      |
| 14.20 | (11) Estimation of Coupling<br>Parameters for Auto-Motorized<br>Fabrication of Directional Fiber<br>Coupler<br>D. Irawan (UTM) | (04) Development of Suction<br>Forceps for Endoscopic<br>Submucosal Dissection<br><i>E. Shikishi (SIT)</i>                                                 |
| 14.40 | (11) High Resolution Algorithm<br>for Frequency Difference of<br>Arrival Estimation<br>V.V. Yem (HUST)                         | (04) Research on Mechanism<br>Analysis for Pressure Ulcers<br>Y. Mizutani (SIT)                                                                            |
| 15.00 | (11) Joint Signal Parameters<br>Estimation for Advanced<br>Wireless Positioning Systems<br>V.V. Yem (HUST)                     | (04) Development of a Skin<br>Viscoelasticity Measurement<br>System<br><i>T. Yamashita (SIT)</i>                                                           |

## Presentation Session V (cont.)

| Room 3 (404)             | Room 4 (410)              | Room 5 (411)                  |
|--------------------------|---------------------------|-------------------------------|
| (03) Green Roofs as      | (05) Model Based          | (09) Fixed Point              |
| Urban Antidote: A        | Design of Robot           | Theorems for                  |
| Review on Aesthetic,     | Systems Using SYSML       | Generalized Asymptotic        |
| Environmental,           | M.A. Bin (SIT)            | Pointwise                     |
| S. Rahman (UTM)          |                           | C. Mongkolkeha(KMUTT)         |
| (03) Aesthetic Fitness   | (05) Filtering Robot      | (09) Generalized              |
| Design in Urban          | Technoloty Ontology       | Nonlinear Mixed               |
| Historic Context         | Based on Conceptnet       | Composite-Type                |
| H. Sotoudeh (UTM)        | Reliability Score         | Equilibria                    |
|                          | T. Ngo (SIT)              | P. Sunthrayuth (KMUTT)        |
| (03) Johor River         | (05) 2011 Advance         | (09) Numerical                |
| Corridor Cultural        | Report of Ubiquitous      | Modeling of The               |
| Landscape: Landscape     | Robot Technology          | Transmission Dynamics         |
| Assessment and           | System Research Center    | of Bird-Flu Epidemic          |
| Conservation             |                           | Model                         |
| H. Ahmad (UTM)           | M. Mizukukawa (SIT)       | S. Chinviriyasit (KMUTT)      |
| (03) Historical Research | (05) Two-Hand Gestures    | (09) Common Fixed             |
| on Shron Hikawa          | Tracking and              | Point Theorems for            |
| Nyotai Shron             | Recognition for Human-    | Generalized Jh-               |
| H. Miwa (SIT)            | Robot Interaction         | Operators in Cone             |
|                          | System                    | Metric Spaces                 |
|                          | L. Dung (HUST)            | P. Chaipunya (KMUTT)          |
| (03) A Study on The      | (08) Experimental         | (09) Fixed Points and         |
| Tokuma Katayama          | Methods to Determine      | Common Fixed Points           |
| Archives-Design          | Noise in Compartment      | for Cyclical Type             |
| Charateristics           | and Acceleration          | Contractions                  |
| H. Miwa (SIT)            | M Rejab (UTM)             | P. Chaipunya (KMUTT)          |
| (03) The Impact of       | (08) Problems in The      | (09) Analysis of The          |
| Visual Aesthetic         | Introducing a Premium     | 1918 Flu Pandemic             |
| Assessment (VAA) in      | Channel and               | Model                         |
| Malaysia Future          | Environmental             | A. Sirijampa (KMUTT)          |
| Planning                 | Response                  | 286 350 00 000                |
| M. Rosley (UTM)          | Y. Ohta (SIT)             |                               |
|                          | Contraction of the second | Constant States Party         |
|                          | and the second second     |                               |
|                          |                           |                               |
|                          |                           | Constants and Manager and the |

SEATUC Symposium, March 6-7, 2012, KMUTT, Thailand

## PLASMA DIAGNOSIS IN ETCHING AND ASHING OF DIAMOND CARBON COATING

E.E. Yunata<sup>1</sup>, T.Aizawa<sup>2</sup>, N.T.Redationo<sup>3</sup>

## Graduate School, Department of Physic, Brawijaya University, Indonesia

## Department of Design and Engineering, Shibaura Institute of Technology, JAPAN

## Graduate School, Department of Mechanical Engineering, Brawijaya University, Indonesia

#### ABSTRACT

Diamond-like carbon (DLC) coating has been widely used as an efficient and reliable protective coating. To recycle the mold-die substrates, the used DLC coating must be perfectly removed before recoating without damage to substrates and residuals. The RF-DC high dense plasma etching or ashing process is utilized to describe the plasma-etching behavior by using the spectroscopic analysis. First, RF-and DC-voltages together with pressure are varied in this oxygen plasma etching to search for an optimum condition; DC-bias is -450V, RF voltage is 250 V and oxygen gas pressure40 Pa. Oxygen plasma spectrum is analyzed to define the pure oxygen plasma. It is composed of oxygen atoms, activated oxygen atoms, and molecules. In-situ plasma monitoring is also used to measure CO peak in the range 200-300 nm. Detection of CO peak proves that carbon in DLC coating is reacted with oxygen flux; i.e. C (in DLC) + O  $\rightarrow$  CO. Variation of CO peaks correspond to etching behavior.

## PLASMA DIAGNOSIS IN ETCHING AND ASHING OF DIAMOND CARBON COATING

E. E. Yunata<sup>1</sup>, T. Aizawa<sup>2</sup>, N. T. Redationo<sup>3</sup>

Graduate School, Department of Physic, Brawijaya University, Indonesia Department of Design and Engineering, Shibaura Institute of Technology, JAPAN Graduate School, Department of Mechanical Engineering, Brawijaya University,

Indonesia

#### ABSTRACT

Diamond-like carbon (DLC) coating has been widely used as an efficient and reliable protective coating. To recycle the mold-die substrates, the used DLC coating must be perfectly removed before re-coating without damage to substrates and residuals. The RF-DC high dense plasma etching or ashing process is utilized to describe the plasma-etching behavior by using the spectroscopic analysis. First, RF- and DC-voltages together with pressure are varied in this oxygen plasma etching to search for an optimum condition; DC-bias is -450 V, RF voltage is 250 V and oxygen gas pressure 40 Pa. Oxygen plasma spectrum is analyzed to define the pure oxygen plasma. It is composed of oxygen atoms, activated oxygen atoms, and molecules. In-situ plasma monitoring is also used to measure CO peak in the range 200-300 nm. Detection of CO peak proves that carbon in DLC coating is reacted with oxygen flux; i.e. C (in DLC) + O  $\rightarrow$  CO. Variation of CO peaks correspond to etching behavior.

#### **1. INTRODUCTION**

Diamond-like carbon (DLC) is a meta-stable form of carbon. It has preferable mechanical properties for protective coating; low friction coefficient and high hardness (Marciano, 2009). This DLC coating is widely used not only for protective coating but also for mold-die substrate in micro-patterning (Matilainen, 2010).RF-DC high dense plasma etching or ashing were developed as a common tool to make micro patterning on the DLC-coated molds and dies.

In general, the etching process is defined by removal of coatings on the selected areas (Ricci, 2005). Oxygen gas is used to generate plasma. Treatment of different materials with oxygen plasma has become a technique widely used on experimental and industrial scale. In recent years, oxygen plasma generated with RF discharge has been found to be very effective for plasma etching, surface activation, cleaning, and oxidation of different materials (Cvelbar, 2008). Controlling and understanding etching process by plasma diagnosis are needed. Optical emission spectroscopy is a method for plasma diagnosis. Optical Emission spectroscopy is a non-invasive probe to investigate the activated state of atoms, ions and molecules in the plasmas. It provides the information about excited state of atoms, radicals, molecules or ions. From the measured spectrum, various physical parameters are estimated with aid of simulation; e.g. the species density, the electron-atom and ion-atom collision effect, and the energy distribution of species (Villpando, 2010).

In this present study, plasma diagnosis is used to describe pure oxygen plasma and also chemical reaction in plasma etching. In-situ plasma measurement is done to control plasma etching. Through indentifying and analyzing CO peaks, time variation of reactivity during plasma etching is monitored on time.

#### 2. EXPERIMENT

### 2.1 High Dense Plasma Etching System

Main cylindrical chamber was made of stainless steel with the diameter of 480 mm and the length of 580 mm, as shown in Fig. 1. This chamber was connected to the vacuum system through a leak valve. The system was pumped with two-stage; oil rotary pump with a pumping speed of 1000 L/min and ultimate pressure of  $4.0 \times 10^{-2}$  Pa. This chamber was connected to RF generator. Instead of the conventional mechanical matching, input-output matching was automatically performed in the frequency range around 2 MHz. The chamber was cooled by water cooling system and forced air.



Figure 1. High dense plasma etching system. 1: Chamber,
2: RF-plasma generator, 3: Control-panel, 4: Electric sources, 5: Evacuation system, 6: Gas supply, 7: Plasma Diagnosis (PMA-11)

### 2.2 Plasma Diagnosis System

The parameters of plasma in the chamber were measured with optical fiber detector. The spectrum was measured by an optical emission spectroscopy (OES) PMA-11 (Hamamatsu Photonica, Ltd.). Observation was done through a quartz window mounted on the top of the chamber perpendicularly to the sample. The spectra detected by optical detector transfer to the computer. Those data were analyzed by using OES software. Typical experimental set-up and specification of (OES) PMA-11 (Hamamatsu Photonica, Ltd.) are depicted in Fig. 2.



| Photo-detector                                 | Image Intensifier +<br>BT-CCD linear image<br>sensor | Device cooling<br>temperature | - 15°C                               |
|------------------------------------------------|------------------------------------------------------|-------------------------------|--------------------------------------|
| Wavelengths                                    | 200 nm to 950 nm                                     | Read-out noise                | 10 electrons                         |
| Wavelengths<br>resolution<br>(FWHM)            | < 3 nm                                               | Dark current                  | 75 electrons/scan (-<br>15°C; 20 ms) |
| Exposuretime                                   | 19 ms to 32 s                                        | AD Resolution                 | 16 bit                               |
| Gate time                                      | >= 10 ns                                             | Spectrograph                  | Czerny-Turner type                   |
| Gate repetition                                | <= 200 kHz                                           | Spectrograph F                | 4                                    |
| Number of<br>photosensitive<br>Bevice channels | 900 ch                                               | Fiber receiving               | diameter 1 mm                        |
| Pixel size                                     | 24 micron x 2.928<br>mm                              |                               |                                      |

Figure 2. 1: Chamber, 2: OES PMA-11 Hamamatsu, 3: Computer and software, 4: Spectrum Display

#### 3. EXPERIMENTAL RESULTS

#### 3.1 Plasma Diagnosis of Oxygen Plasmas

The emission spectra were measured and analyzed when plasma oxygen was generated at the pressure 40 Pa and by RF, 250 V and DC-bias, -450 V. Figure 3 represents the pure oxygen plasma spectra in two different state. In Fig.3. (A), activated oxygen molecules such  $O_2^*$  and  $O_2^+$  prevails the whole spectrum; little oxygen activated atoms and ions are detected in this plasma diagnosis. Both oxygen atoms and activated atoms have much more intensities than molecules in Fig. 3. (B). This difference of activated species in the oxygen plasmas reflects on the plasma etching behavior.

In normal plasma-state control, the activated oxygen molecules and molecule ions coexist with activated oxygen atoms. In fact, most of detected peaks from 120 to 376 nm correspond to the atomic oxygen transition. The molecular oxygen in the Schumann-Runge system  $(B^3\Sigma_{u} - X^3\Sigma_{j})$ , is detected at 374 nm and 437 nm as well; they have much lower intensity. The ionized oxygen molecules in positive system  $(b^4\Sigma_{u} - a^4\Pi_{u})$ , are also observed at 555 nm and 774 nm, as summarized in Table 1. This implies that oxygen molecules are gradually activated to atomic species and ions in the normally controlled plasma-state.



Fig. 3. Emission spectra of oxygen plasma in the wave-length range of 0 - 900 nm. In (A), the activated oxygen molecules is prevailing the plasma state, while main activated oxygen atoms are governing the plasma state in (B).

Table.1 Emission bands monitored for oxygen atomic, oxygen molecule, and ionized oxygen molecule during

oxygen plasma activation.

| Atomic         | Molecule   | Ionized Molecule |
|----------------|------------|------------------|
| Oxygen         | Oxygen     | Oxygen           |
| 155 nm (O VII) | 374 nm (🗛) | 555 nm (02+)     |
| 183 nm (O II)  | 437 nm (🗛) | 774 nm (02+))    |
| 210 nm (O II)  |            |                  |
| 234 nm (O II)  |            |                  |
| 240 nm (O III) |            |                  |
| 255 nm (O III) |            |                  |
| 303 nm (O III) |            |                  |
| 3.2 Effect o   | f Process  | Parameters on    |

Plasma-State

RF-voltage, DC bias, and oxygen pressure are main parameters affecting on the plasma etching behavior. RF-voltage and pressure during the process give the different effect on the oxygen plasma. Fig.4 explains the variation of plasma parameters on the measured spectrum. The dash line explains that the spectrum using low RF-voltage, DC bias and pressure. The dot line is the spectrum using low RF, but high DC bias and pressure. From both spectrums the etching rate isn't so good. The solid line is the combination in matching plasma parameters and have high etching rate.



Fig.4. Effect of RF-voltage, DC-bias, and pressure on the oxygen plasma.

#### 3.3 Chemical Reaction in Etching

Plasma diagnosis was also performed to investigate the chemical reaction between oxygen and carbon in DLC coating during plasma etching. Figure 5 depicts the measured spectrum when using RF 250, DC -450 V, and pressure 40 Pa.



Fig.5. Measured spectrum during plasma etching. New peaks were identified to be corresponding to CO.



Fig.6. Deconvolution of original measured peak to three profiles: oxygen atoms and CO.

Figure 6 explains the deconvolution process from the original measured peak to three profiles in the range 248 nm- 258 nm. The fourth positive system of CO ( $A^1 \prod - X^1 \Sigma$ ) appears and is indentified at 256.31 nm. In the similar data acquisition as done in the above, other two characteristic CO-peaks at the wave length of 210.72 nm and 240.76 nm were detected besides above peak qt 256.31 nm.

#### DISCUSSION

In general, movement of electrons and ions are enhanced by increasing DC-bias; this is a typical ion/electro bombardment effect on the etching process. As shown in Fig. 4, RF-voltage has a direct effect on the oxygen plasma spectrum. Peak intensities for oxygen atoms, oxygen molecules, and ionized oxygen molecules increase with this RF-voltage. Intensity of atomic, molecule, and ionized-molecule oxygen depends on the oxygen pressure. Higher RF-voltage and lower pressure is indispensable to generate more oxygen-atom species.



Fig.7. Variation of CO peak intensity by insitu measurement during plasma etching

Variation of CO peak intensity, insitu measured during etching process, was shown in Fig.7. At the beginning, chemical reaction between carbon in DLC and activated oxygen atoms commences to generate CO. This reactant of CO is ejected from the etching front to outlet in gaseous phase, and, is measured in the spectrum. This is a normal etching process where the carbon in DLC coating should be removed. With processing time, the measured CO-peak intensity is gradually reduced as shown in Fig. 7.

Consider that etching process advances in the narrowed micro-grooves in the inside of DLC coating. Oxygen flux comes into this micro-groove while the reactant CO flushes out of this. This turbulent mixing around the inlet of micro-groove drives the reactant CO gas to diffuse in any directions from the substrate surface. This might result in apparent reduction of CO-detection by the sensor, which was placed at the top of chamber. In addition, carbon source also reduces with processing time. In this etching experiment, little or no CO-peak signals were detected at 3450 s. This tells the end of etching.

In-situ measurement of reactants like CO becomes a preferable means to control the plasma etching process without intermission. This suggests that on-line detection of mono-oxides should be effective to consider the possibility of etching in any material systems; e.g. oxygen plasma etching of metallic interlayers like tungsten or chromium.

#### CONCLUSION

Plasma diagnosis was effective in this experiment and effective to describe the chemical reaction during plasma etching; e.g., the reaction between oxygen and carbon were identified by new peak of CO at 256 nm in spectrum. Plasma diagnosis was also effective to make in-situ monitoring on plasma state during plasma etching and to control the plasma etching process.

#### REFERENCES

Benndorf C., et al, 1994, Mass and optical emission spectroscopy of plasmas for diamond-synthesis. 1206, 1198-1200

Cvelbar U., et al,2008, Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy. 82, 225-227

Gaydon A.G., et al, 1941, The identification of molecular spectra, 89-172

Marciano F.R.,2009, Oxygen plasma etching of silver-incorporated diamond-like carbon films., 22-4, 5739-5740

Matilainen A., et al,2010, Optical emission spectra of OMCTS/O2 fed plasmas used for thin film deposition. 1208, S301-S302

National Institute of Standards and Technology, Atomic Spectra Database Retrieved from http://physicst.nist.gov/PhysRefData/ASD/line\_form.htm

Ricci A.,2005, Dry etch process application note, 1-2

Verdonck .1990, Dry etching for integrated circuit Fabrication.

Villpando de la T. I., 2010, Diamond coating on graphite for plasma facing materials, 11-17



**E. E. Yunata** received the S.Si (2009), M.Si (2012) in Physic Instrumentation from Brawijaya University, Indonesia.

Tatsuhiko Aizawa received B.E. (1975), M.E. (1977), and D.E. (1980)degrees in Nuclear Engineering from University of Tokyo. He is a professor, Department of Design and Engineering, SIT. His current include interests nano and micro-manufacturing, plasma processing, high dense nanotechnology, and surface design engineering.



N.T. Redationo received the ST (1998) Mechanical Engineering from Catholic University Widya Malang, M.T. (2003)Master Mechanical Engineering from Brawijaya University. (2010-- ) Graduate School, Department of Mechanical Engineering, Brawijaya University, Indonesia. (1999--) Lecture in Mechanical Engineering Catholic University Widya Karya Malang Indonesia